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Abstract. We investigate the spin-1
2 Heisenberg star introduced by Richter and Voigt. The

model is defined byH = J1
∑N

i=1 s0si + J2HR{si}; J1, J2 > 0, i = 1, . . . , N . In extension to
the work of Richter and Voigt we consider a more generalHR{si} describing the properties
of the spins surrounding the central spins0. The Heisenberg star may be considered as an
essential structure element of a lattice with frustration (namely a spin embedded in a magnetic
matrix HR) or, alternatively, as a magnetic systemHR with a perturbation by an extra spin.
We present some general features of the eigenvalues, the eigenfunctions as well as the spin
correlation〈s0si〉 of the model. ForHR being a linear chain, a square lattice or a Lieb–Mattis-
type system we present the ground-state properties of the model in dependence on the frustration
parameterα = J2/J1. Furthermore, the thermodynamic properties are calculated forHR being
a Lieb–Mattis antiferromagnet.

1. Introduction

The properties of interacting quantum spins have attracted a lot of attention over a long
period. Only some model Hamiltonians can be solved exactly. Important examples are
(i) models in one dimension solvable by the Bethe ansatz [2–4], (ii) valence-bond models
[5–7], (iii) a one-dimensional model with long-range inverse-square exchange [8–11], and
(iv) models with long-range interaction of constant strength (Lieb–Mattis-type models [12]
which have been used to discuss spontaneous symmetry breaking in quantum spin systems
recently [13–15]).

In [1] (hereafter referred to as STAR I) we introduced the frustrated spin-1
2 Heisenberg

star with a HamiltonianHI = J1
∑N

i=1 s0si + J2
∑N

i=1 sisi+1 (J1, J2 > 0) representing a
central site withN nearest neighbours which can be unconnected (J2 = 0) or connected
(J2 6= 0). The star can be considered either as an essential structure element of a lattice or
as a linear chain with a perturbing extra spin.

For the above defined HamiltonianHI we presented in STAR I general relations for
the eigenvalues, the eigenstates and the spin correlation function in the ground state as well
as numerical results forN = 4, 6, . . . , 22. Analysing the analytical and numerical data we
discussed the ground-state phase diagram, in particular, the ground-state spin correlations
versusα = J2/J1. We found that forJ2/J1 < αcrit the ground state of the system is the
state with strongest antiferromagnetic correlation〈s0si〉 = − 1

4 − 1
2

1
N

between the central
spin s0 and a neighbouring spinsi and with ferromagnetic correlations〈sisj 〉 = 1

4 within
the ring. If J2/J1 exceedsαcrit it follows a series of transitions to states with successively
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weaker correlations〈s0si〉 ending with〈s0si〉 = 0 for dominatingJ2. For αcrit we found
exactly 1

4, independent of the size of the system. For largerN this weakening of the
antiferromagnetic correlation of the central spin takes place very rapidly when changing
J2/J1 in a small region aboveαcrit. The extrapolationN → ∞ yields for J2/J1 < αcrit

the correlator〈s0si〉 = − 1
4 which can be considered as an upper limit for the ground-state

correlation〈slsm〉0 of antiferromagnetically interacting spinsl andm in a spin-12 Heisenberg
antiferromagnet without competition between the interactions. We argued that any ground-
state spin correlation〈sisj 〉 of antiferromagnetically coupled spinssi andsj larger than− 1

4
is an effect of competing interactions. In the limit of largeJ2/J1 the correlation〈sisj 〉0

within the ring becomes antiferromagnetic and the ring state goes over to the Bethe singlet
for J2 ≈ J1N

(
2
π2 + O

(
1

ln N

))
.

In this paper we generalize the model by considering a central spin with different
embedding media. In particular, we compare models where a central spin is embedded in
an antiferromagnetic Heisenberg matrix of linear chain, square lattice and Lieb–Mattis type.
Furthermore, we discuss in more detail the properties of the model in the thermodynamic
limit N → ∞. Additional to the ground-state properties we present the full thermodynamics
in the case of the Lieb–Mattis star.

2. Model and general relations

We consider a spin-1
2 Heisenberg system

H = J1

N

N∑
i=1

s0si + J2HR{si} J1, J2 > 0 . (1)

H
R

S0

Here HR{si} represents a spin-1
2 rotationally invariant antiferromagnet describing the

medium which surrounds the central spin. In equation (1) the interaction with the central
spin was scaled byN . A similar scaling will also be used forHR (see below). In contrast
to the paper STAR I we do not specify the HamiltonianHR at this point.

Several general relations found for theLC star in STAR I are valid for the more general
HR, too. Let us define the total spinS = ∑N

i=0 si of the system and the total spin of
the embedding mediumSR = S − s0 = ∑N

i=1 si . The following universal features of the
model are important:

(i) The integrals of motion of the systems areH , HR, S2, Sz, S2
R with the respective

quantum numbersE, ER, s, m, r.
(ii) The eigenvalues ofH are given by

E = J2ER + J1

2N
r for s = r + 1

2 r = 0, 1, 2, . . . ,
N

2
(2)

E = J2ER − J1

2N
(r + 1) for s = r − 1

2 r = 1, 2, . . . ,
N

2
. (3)
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Clearly, for fixedr and fixedER the states withr = s + 1
2 have lower energy. Let us look

for the lowest energy in every subspace of fixed quantum numberr. For the energyER

of the embedding antiferromagnetHR we have the Lieb–Mattis level ordering [12, 16] for
the lowest eigenvalueER(r) in the considered subspace. Hence, from the general relation
(3) we indicate a competition between both energy terms leading to interesting frustration
effects. In particular, at zero temperature the frustration parameterα = J2/J1 determines the
quantum numberr in the ground state and may be used to tune the ground-state properties.

(iii) The basic structure of the eigenstates of (1) reads as follows:

|8E,s,m,r〉 = a|↑〉|8R
ER,r,m−1/2〉 + b|↓〉|8R

ER,r,m+1/2〉 (4)

where|↑〉 and|↓〉 are the eigenfunctions of thez-component of the central spins0,z and the
|8R

ER,r,m±1/2〉 are the eigenfunctions ofHR, S2
R, SR,z with the corresponding eigenvalues

ER, r(r + 1), m ± 1
2. The eigenfunctions|8R

ER,r,m+1/2〉 and |8R
ER,r,m−1/2〉 of HR are related

to each other by

|8R
ER,r,m−1/2〉 = [r(r + 1) − (m + 1

2)(m − 1
2)]−1/2S−

R |8R
ER,r,m+1/2〉 . (5)

The coefficientsa andb do not depend onJ1, J2 and are given by

a =
√

r + m + 1
2

2r + 1
b =

√
r − m + 1

2

2r + 1
for s = r + 1

2 (6)

a = −
√

r − m + 1
2

2r + 1
b =

√
r + m + 1

2

2r + 1
for s = r − 1

2 . (7)

(iv) For the spin correlation of the central spin with a spin of the embedding medium
we have

〈8E,s,m,r |s0si |8E,s,m,r〉 = r

2(N − 1)
for s = r + 1

2 (8)

〈8E,s,m,r |s0si |8E,s,m,r〉 = −(r + 1)

2(N − 1)
for s = r − 1

2 . (9)

The spin correlation within the embedding medium, of course, depends on the detailed
structure ofHR.

The more specific properties of the model are determined by properties of the embedding
medium entering the general relations (2)–(9) viaER, |8R

ER,r,m±1/2〉. Whenever the solution
for the Hamiltonian of the surrounding mediumHR is known (i.e.ER and |8R

ER,r,m±1/2〉 are
available) the total system is solvable.

We consider as solvable systems the linear chain (LC) and the Lieb–Mattis
(LM) antiferromagnet. Both models represent the extreme limits of the Heisenberg
antiferromagnet with maximal (LC) and minimal (LM) quantum fluctuations. Additionally to
the solvable limits we present approximate results for the square-lattice (SL) antiferromagnet.
In order to compare the different cases we scale the interactions by the number of sitesN so
that the energy becomes intensive and that the energy of the fully polarized ferromagnetic
state is identical,Efm

R = 1
4, for all embedding media considered. This scaling is consistent

with the 1/N -scaling of the interaction of the central spin (see equation (1)). We write for
the Hamiltonians of the media

H LC
R = 1

N

N∑
i=1

sisi+1 (10)

H SL
R = 1

2N

N∑
i=1

(sisi+x̂ + sisi+ŷ ) (11)
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H LM
R = 4

N2

N∑
i,j=1

i∈A,j∈B

sisj . (12)

In what follows we fixJ1 = 1 and considerα = J2/J1 as the parameter of the model.

3. Finite systems

For smallN the star can serve as an elementary cluster of a lattice with frustration. We
focus our consideration in this section on the example ofN = 8. For thatN the LM system
is by chance identical with theSL. For comparison we add to the discussion of theLC, SL

andLM star the elementary cube of the body-centred cubic lattice (BCC). The calculation of
the spectra and the wavefunction can be simply done by numerically exact diagonalization.
The results for the relevant spin correlation of the central spins0 with a neighbouring spin
si are presented in figure 1. The steps in the correlation functions indicate the transitions
between states with different quantum numberr. Of course, the frustratingJ2 interaction
weakens the antiferromagnetic correlation. But it is interesting that independent of the
embedding medium an essential diminishing of the strength of the correlation takes place
in a small region aboveαcrit = (J2/J1)crit = 1

4. This region is, in particular, small if the
surrounding medium has a low number of nearest neighbours (LC). Otherwise, complete
suppression of the antiferromagnetic correlation by the frustratingJ2 takes place for fairly
largeα (precisely atN/4 for LM and at slightly lower values forLC andBCC).

Figure 1. Ground-state spin correlation〈s0si〉 versus
α = J2/J1 for a finite cluster of a central spins0 with
N = 8 neighbouring spinssi for various arrangements
of neighbouring spins (LC, linear chain;BCC, elementary
unit of a body centred lattice;LM, Lieb–Mattis;SL, square
lattice).

For smallN one can calculate the full thermodynamics. As an example we present the
temperature dependence of〈s0si〉 and 〈sisj 〉 for the LC star in figure 2. (The behaviour
is qualitatively the same for the other systems.) Forα < 1

4 the behaviour is the standard
one for both〈s0si〉 and〈sisj 〉, i.e. the strength of the correlation is diminished by thermal
fluctuations. Of course, there is no sharp transition for the finite system. Forα > 1

4 the
frustration is more important and we find for low temperatures a qualitatively different
behaviour for〈s0si〉 and 〈sisj 〉. While the thermal fluctuations diminish the correlations
within the medium at the same time they increase the strength of antiferromagnetic
correlations of the central spin. Thisorder from disorderphenomenon was observed in
several frustrated systems [17–20] and is connected with a competition between different
energy scales. In particular, slightly aboveα = 2 the ground-state correlation〈s0si〉0 is
zero (cf figure 1), but the fluctuations cause an antiferromagnetic alignment of the spins at
finite temperatures.
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Figure 2. (a) Spin correlations〈s0si〉 and (b) 〈sisj 〉 (i and j are neighbouring sites) versus
temperatureT at variousα = J2/J1 for a finite cluster of a central spins0 with N = 8
neighbouring spinssi which form a linear chain (LC).

4. The thermodynamic limit

4.1. Ground state

Now we turn to the thermodynamic limit. Then the star represents an antiferromagnet
frustrated by an interaction with an extra spins0. This situation is somewhat similar to
the slightly doped high-Tc cuprate superconductors where the holes at the oxygen sites
create antiferromagnetically coupled extra spins frustrating the antiferromagnetic copper
matrix [21–24].

We define the normalized quantum number of the medium

x = 2

N
r 0 6 x 6 1 . (13)

The ground-state energy is obtained by equation (3) by selecting the lowest eigenvalueER

for a given quantum numberr and finding thatr which minimizes the energy for givenJ1

andJ2. ER of the LM antiferromagnet is given by the analytic expression

ELM
R = x2

2
− 1

4
. (14)

For theLC no simple analytic expression is available, theELC
R (x)-function was calculated

by the numerical solution of the Bethe ansatz equations [3, 4]. However, near maximal
polarization,x → 1, we can extract from the Bethe ansatz an analytic relation for the
energyER

ELC
R (x) = 1

4
− (1 − x) + π2

48
(1 − x)3 + O((1 − x)5) . (15)

For the square lattice only approximate results are known. We calculatedESL
R (x) for

lattices ofN = 16, 18, 20 and 24 sites with periodical boundary conditions. The energy
scales withN−3/2 [25–27]. By interpolation between the discrete points calculated for
N = 16, 18, 20, 24 sites and extrapolation toN → ∞ we obtained the numerical data for
ESL

R in the thermodynamic limit. The error of theseSL data could be estimated by comparing
our result forx = 0 (antiferromagnetic singlet ground state) with the best available results
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of various methods (variational Monte Carlo, world-line Monte Carlo, spin–wave theories,
see the review [28]). We found an error of less then 3%.

A general result (independent of the model and the size of the system) is the stability
of the fully polarized (x = 1) ferromagnetic state of the embedding medium until precisely
α = 1

4. At this point a second-order transition to a canted magnetic structure occurs. Only
at infinite J2/J1 is the antiferromagnetic singlet state reached. In more detail we want to
discuss the ground-state energy, the spin–spin correlation and the order parameters.

Energy. In figure 3 we present the ground-state energy dependence onα = J2/J1. We find
a maximum slightly aboveα = 1

4. For theLM star the maximum is atα = 1/
√

8 ≈ 0.35.
For theLC and theSL star the position of the maxima is obtained from the numerical data at
0.26 (LC) and 0.30 (SL). The maximum inE(x) indicates the region of strongest frustration
and coincides according to the Hellmann–Feynman [29] theorem with the point where the
nearest-neighbour correlation function〈sisj 〉0 vanishes (maximal spin canting).

Spin–spin correlation. In figure 4 the spin–spin correlation functions〈s0si〉0 and 〈sisj 〉0

(i, j 6= 0, j = i + 1 for LC, j = i + x̂ or j = i + ŷ for SL and j ∈ A, i ∈ B for LM) are

Figure 3. Ground-state energy versus frustration
parameterα for N → ∞.

Figure 4. Ground-state spin correlation within
the medium 〈sisj 〉 and between the central spin
and the embedding medium〈s0si〉 versusα in the
thermodynamic limitN → ∞.
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presented. For theLM system these correlation functions are given by explicit formulae

〈s0si〉0 = − 1

16

1

α
α > αcrit (16)

〈sisj 〉0 = 1

32α2
− 1

4
α > αcrit . (17)

For the LC and theSL stars they are a result of numerical calculations. It is evident that
the physical properties are changed drastically in a small parameter region slightly above
the criticalαcrit = 1

4. For theLC system it is even suggested by the numerical data that the
correlation changes at this point with an infinite slope. This can be checked analytically
using equation (15). We obtain withβ = α − 1

4, β � 1

〈s0si〉0 = −1

4
+ 2

π
β1/2 − 4

π
β3/2 + O(β5/2) α > αcrit (18)

〈sisj 〉0 = 1

4
− 8

π
β1/2 + 80

3π
β3/2 + O(β5/2) α > αcrit . (19)

In other words, for the infiniteLC star the transition atα = 1
4 is extremely sharp but still of

second order. TheLM correlation has forβ → 0 a finite slope and the correlation behaves
according to〈s0si〉0 = − 1

4 + β + O(β2) and〈sisj 〉0 = 1
4 − 4β + O(β2). The behaviour of

the SL star is just intermediate between the two limiting casesLC andLM.

Order parameters. On the basis of the spin correlation we can define the order parameters

M2 =
〈[

1

N

N∑
i=1

si

]2〉
= 1

N2

N∑
i,j=1

〈sisj 〉 (20)

for ferromagnetic and

M2
s =

〈[
1

N

N∑
i=1

τisi

]2〉
= 1

N2

N∑
i,j=1

τiτj 〈sisj 〉

τi = +1 i ∈ A τi = −1 i ∈ B (21)

for antiferromagnetic long-range order within the medium. Here we choose the definitions
via the long-range part of the correlation functions and do not introduce the symmetry
breaking field (cf [13–15]). The ferromagnetic order parameter can be expressed directly
by the normalized quantum numberx defined in (13),M2 = 1

4x2 and can be calculated
numerically forLC and SL, but analytically forLM. The antiferromagnetic order parameter
can be evaluated for theLM system only. We have

M2
LM = 1

64α2
α > αcrit (22)

M2
s,LM = 1

4
− 1

64α2
α > αcrit . (23)

For the ferromagnetic order parameterM2
LC of the LC system an analytic expression is

available near the second-order transition, i.e. forβ = α − 1
4 � 1

M2
LC = 1

4

(
1 − 16

π
β1/2 + 64

π2
β + 32

π
β3/2 + O(β2)

)
α > αcrit . (24)
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To discuss the magnetic long-range order in the whole parameter range we use instead of
the ferro- and antiferromagnetic order parameters a parameter

P = 1

N2

N∑
i,j=1

|〈sisj 〉| (25)

whereP measures the total pair correlations. For collinear ferro- (i.e. for dominatingJ1) or
collinear antiferromagnetic order (i.e. for dominatingJ2) P coincides with the corresponding
order parametersM2 andM2

s . For theLM systemP is given by

P = 1

8
+

∣∣∣∣1

8
− 1

64

1

α2

∣∣∣∣ α > αcrit . (26)

Figure 5. Ground-state total correlation parameterP

(cf equation (25)) of the medium versusα.

Because forLC and SL the order parameterP is not known in the thermodynamic
limit we have calculatedP with N = 24 by exact diagonalization. The results forP are
presented in figure 5. In accordance with the behaviour of the spin correlations presented
in figure 4 there is a rapid change from the ferromagnetic long-range order for dominating
J1 via a canted structure to a state with dominating antiferromagnetic correlations. This
antiferromagnetic state is long-range ordered for theLM andSL but possesses no long-range
order inLC because of the extremely large quantum fluctuations in one dimension. There is a
sharp minimum forLM andSL indicating the area with weak pair correlation. This minimum
coincides with the maximum of the energy, i.e. with the point of maximal frustration. For
LC the behaviour is qualitatively different, because in contrast toSL and LM the phase for
largeα is not long-range ordered.

Of course, forSL andLC we have to take into consideration the finite-size effects. Due
to the contributions of the short-range correlationsP is overestimated for finite systems, i.e.
P(N) > P(∞). For instance, the value forP larger than1

4 at smallα and the non-vanishing
P for the LC at larger values ofα is a consequence of the finite size. Furthermore, we can
expect that forSL the minimum inP at strong frustration goes to zero in the thermodynamic
limit, i.e. there is no long-range order forα in a region around 0.3.

4.2. Thermodynamics for the Lieb–Mattis star

The LM star is distinguished from the other systems by the existence of two additional
integrals of motion, namely the square of the sublattice spinsSRA(B)

= ∑
i∈A(B) si
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(SR = SRA
+ SRB

). This fact allows us to find explicitlyall eigenvaluesEs,r,rA,rB

E = 1

2N
J1

[
s(s + 1) − r(r + 1) − 3

4

] + 2

N2
J2[r(r + 1) − rA(rA + 1) − rB(rB + 1)] (27)

where we have for the relevant quantum numbers

rA(B) = 0, 1, . . . ,
N

4
for S2

RA(B)
(28)

r = |rA − rB |, . . . , rA + rB for S2
R (29)

S = |r − 1
2|, r + 1

2 for S2 . (30)

The degeneracy to the quantum numbersrA(B) is

drA(B)
= 2rA(B) + 1

1
4N + rA(B) + 1

( 1
2N

1
4N − rA(B)

)
. (31)

In addition we have to take into account the Kramers degeneracy (z-component of the total
spin) as(2s + 1) to calculate the partition functionZ

Z = e
3

8N
βJ1

N/4∑
rA=0

N/4∑
rB=0

drA
drB

exp

[
β

2J2

N2
[rA(rA + 1) + rB(rB + 1)]

]

×
rA+rB∑

r=|rA−rB |
exp

[
−β

4J2 − NJ1

2N2
r(r + 1)

] r+1/2∑
s=|r−1/2|

(2s + 1) exp

[
−β

J1

2N
s(s + 1)

]
(32)

with β = 1/(kBT ). In the thermodynamic limit the saddle-point approximation becomes
exact, i.e. the sum in (32) is determined by its largest term. Due to symmetry we have
rA = rB . Defining the normalized sublattice polarization

y = 4

N
rA = 4

N
rB 0 6 y 6 1 (33)

we have for the total polarization of the medium 06 x 6 y. There exist two phases,
which are described by the characteristics of spin correlation and the order parameters of
the medium. One is the ferromagnetic phase (F) for dominatingJ1 (α < 1

4 and the other one
is the canted (or twisted) phase (C) realized only ifα > 1

4. This latter goes over smoothly
in the antiferromagnetic phase forα � 1. The thermodynamic equations are as follows:

Case 1.J2 6 1
4J1 Here only the ferromagnetic phase is realized, i.e. the polarizations of

the sublatticesA andB are parallel and consequently we haver = rA + rB or x = y. The
free energy per site is calculated as

F = FF = −kBT g(y) + 1
4(J2y

2 − J1y) (34)

with

2g(y) = 2 ln(2) − (1 + y) ln(1 + y) − (1 − y) ln(1 − y) . (35)

The sublattice polarizationy is determined via a self-consistency equation

y = tanh
[− 1

2βJ2y + 1
4βJ1

]
. (36)

The spin correlations and order parameters are

〈s0si〉 = − 1
4y 〈sisj 〉|i∈A,j∈B = 1

4y2 〈sisj 〉|i,j∈A(B) = 1
4y2 (37)

M2 = 1
4y2 M2

s = 0 P = M2 = 1
4y2 . (38)
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Figure 6. Transition temperatureTG versusα for the
LM system and illustration of the principal arrangement
of the spins in the ferromagnetic F phase and the canted
C phase. The lower arrow represents the central spin
and the two upper arrows represent the sublattice spins
of the LM system.

Case 2.J2 > 1
4J1. In this case we have two phases separated by a second-order transition

at a critical temperatureTG (see figure 6). BelowTG we have the canted C phase and above
TG the F phase described by the relations (34)–(38). In the C phase we havex = 1/(4α)

and the free energy reads

F = FC = −kBT g(y) − 1

4
J2y

2 − 1

32

J 2
1

J2
(39)

where the sublattice polarizationy is determined by

y = tanh
[

1
2βJ2y

]
. (40)

For the spin correlation and the order parameters we get

〈s0si〉 = − 1

16α
〈sisj 〉|i∈A,j∈B = 1

32α2
− 1

4
y2 〈sisj 〉|i,j∈A(B) = 1

4
y2 (41)

M2 = 1

64α2
M2

s = 1

4
y2 − 1

64α2
P =

∣∣∣∣ 1

64α2
− 1

8
y2

∣∣∣∣ + 1

8
y2 . (42)

The critical temperatureTG determined by

y(T = TG) = 1

4α
(43)

is presented in figure 6. For smallTG (that means forJ2 → J1/4) we have an explicit
analytic expression

kBTG ≈ − J2

ln( 1
2 − 1/8α)

. (44)

The specific heat and the spin correlations are presented in figures 7 and 8. The second-
order transition forα > 1

4 is reflected by the kink in the spin correlations as well as in
the peak of the specific heat. The molecular field-like character of theLM system in the
thermodynamic limit is seen by the shape of the specific heat curve (figure 7). The low-
temperature behaviour for strongly competingJ1 andJ2 is interesting. Similar to the finite
system we findorder from disorderbehaviour, however, this time in the correlation of the
medium〈sisj 〉 and not in〈s0si〉 as for the finite system (compare figure 2 and figure 8). In
particular, for maximum frustration atα = 1/

√
8 the correlationsisj |i∈A,j∈B is completely

suppressed for zero temperature and increases withT until the second-order transition at
TG (figure 8). We argue that the competition betweenJ1 and J2 is influenced by thermal
fluctuations and effectively theJ1 coupling starts to overcome the competingJ2 at finiteT .
For α > 1/

√
8 the correlation function even changes its sign with increasing temperature.
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Figure 7. Specific heat of theLM star versus temperature
T for severalα.

Figure 8. Spin correlation of theLM star between the central spin and the embedding medium
(a) 〈s0si〉 and within the medium (b) 〈sisj 〉, versus temperatureT for severalα.

5. Conclusions

In conclusion, we present the Heisenberg star with competing interactions (frustration) as
an example for a solvable quantum spin system. The solution can be given whenever the
solution of the surrounding medium is known. We consider as embedding media the linear
chain, the square lattice (where only an approximate solution is given) as well as the Lieb–
Mattis antiferromagnet which represent systems with different strengths of the quantum
fluctuations. The effect of competing interactions manifests itself in a maximum of the
ground-state energy at maximal frustration and in a weakening of the magnetic correlation.
In the region of maximal frustration there is a rapid change of correlation functions when the
strength of competition is varied. This change of correlation is in particular dramatic when
the quantum fluctuations are strong (LC). The competition between the exchange interactions
may yield at finite temperaturesorder from disorderphenomena, i.e. the strength of magnetic
correlation can be increased by thermal fluctuations.
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